Copper(II) Complexes of 3-Formyl-5-methylsalicylaldehyde and Its Schiff Bases with Alkyl Amines

Hisashi Okawa

Department of Chemistry, Faculty of Science, Kyushu University, Hakozaki, Fukuoka (Received May 21, 1970)

Two new copper(II) complexes of 3-formyl-5-methylsalicylaldehyde, bis(3-formyl-5-methylsalicylaldehydato)copper(II) (1) and dichloro-μ-chloro-μ-(2,6-diformyl-4-methylphenolato)dicopper(II) (2) (Fig. 1), have been prepared by using copper(II) acetate monohydrate and copper(II) chloride dihydrate respectively as metal sources. Both were easily obtained by adding a solution of the copper(II) salt in ethanol to a solution of 3-formyl-5-methylsalicylaldehyde in ethanol.

In addition to these complexes, new series of oxygen-bridged binuclear copper(II) complexes (3 type) have been synthesized by using the aldehyde, copper(II) chloride dihydrate, and alkyl amines (R-NH₂), in which R represents methyl, ethyl, isopropyl, t-butyl, or chclohexyl groups. The method of synthesizing the complexes was as follows. To a warm solution of the aldehyde and copper(II) chloride dihydrate in ethanol we added a solution of an amine in ethanol to give green or brown needles; these needles were collected and washed with ethanol. The results of the molecular-weight determinations of these complexes support the formula given for the complex 3 in Fig. 1. The analytical data of the complexes obtained are given in Table 1.

In the complexes 2 and 3, the organic moiety acts as a quadridentate chelating agent with the bridging phenolic oxygen, and the copper atoms are held sufficiently close to each other to cause

antiferromagnetic interactions; the magnetic moments determined for the complexes **2** and **3** at room temperature were 1.58 and 0.80—1.29 B. M. respectively. On the other hand, the complex **1** has a normal magnetic moment of 1.81 B. M.

The reflectance spectra of the complexes 2 and 3 each have one d-d transition band, located at 11,100 cm⁻¹ for the complex 2 and at 12,000—14,400 cm⁻¹ for the complex 3; these energies are lower than those expected for mononuclear copper(II) complexes of similar ligands, supporting a binuclear structure and in agreement with the findings of Harris et al.²) It is noteworthy that the complexes also have a binuclear structure in a solution, judging from the spectra in a solution, which are very similar to those measured by the diffuse-reflection method, although the complex 2 is decomposed in the presence of water to the complex 1.

The details of this work will be reported shortly.

Table 1. Analytical data of complexes

Commis		Found (%)				Calcd (%)			
Complex		c C	Н	N	Cu	$\widehat{\mathbf{c}}$	Н	N	Cu
1	55	55.55	3.87		15.96	55.46	3.62		16.30
2	27	7.28	1.85		31.32	27.26	1.78		32.04
(/ R CH ₃ 32) 16	3.24	6.71		32.68	3.49	6.93	
3	$C_{2}H_{5}$ 36		4.01	6.33		36.12	4.20	6.43	
	i-C ₃ H ₇ 39	9.60	4.67	5.73		39.14	4.82	6.09	
	t-C ₄ H ₉ 41	.65	5.19	5.54		41.81	5.37	5.74	
	C ₆ H ₁₁ * 45		5.42	4.83		45.90	5.69	5.10	

^{*} It denotes cyclohexyl. With a half molecule of water.

D. A. Denton and H. Suschitzky, J. Chem. Soc., 1963, 4741.

²⁾ C. M. Harris, J. M. James, P. J. Milham and

E. Sinn, Inorg. Chim. Acta, 3, 81 (1969); B. Coles, C. M. Harris and E. Sinn, Inorg. Chem., 8, 2607 (1969).